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NORMAL NUMBERS AND SELECTION RULES

BY
TETURO KAMAE AND BENJAMIN WEISS

ABSTRACT

Given a normal number x = 0,x.x,--- to base 2 and a selection rule
S c{0,1}*= U7_,{0,1}", we define a subsequence x, =0,x,x, - where
{t,<t,<-}={i; xx;-'x;, €S} x, is called a proper subsequence of x if
limim.t/i <. A selection rule S is said to preserve normality if for any
normal number x such that x, is a proper subsequence of x, x; is also a normal
number. We prove that if S/~ , is a finite set, where ~ . is an equivalence
relation on {0, 1}* such that £ ~,n if and only if {{; & €S}={{;n €S},
then S preserves normality. This is a generalization of the known result in finite
automata case, where {0, 1}*/ ~, is a finite set (Agafonov [1]).

1. Introduction

Let x =0, x,x,--- be the binary expansion of a real number x €[0,1). x is
called a normal number (to base 2) if for any k€ N ={1,2,-'} and ¢ =

(§|’§2"“)§k)€{09 l}ka
ll_l;ll’rl?'{l, X = §|,X.-+1 = gz,""xi+k-l = fka I=si= n}l = 2_k-

Let {0, 1}* = U7_0{0, 1}*, where {0,1}°={a} and A is the empty word. For
£=(&,6,,6) and m = (11,72, -+, 1) both belonging to {0, 1}*, define the
concatenation £&n €{0,1}* by &n = (£, &, -, &, m1,M2 -+, ). Thus {0, 1}* is
considered as a semigroup under concatenation. For S C{0,1}*, define an
equivalence relation ~, on {0,1}* as follows: £~ if {{;& € S}=
{¢;m¢ € S}. Note that S is a union of equivalence classes and that if £ ~ ;n,
then & ~ .m¢ for any ¢ €10, 1}*.

A subset S of {0, 1}* is called a selection rule. For a selection rule S and
a real number x =0, x,x, - (2-expansion), we define x, =0, x,x,,* - -, where
{ti<ta<-}={i; (x1,%2,++,xi-1) €ES}. We call x, a proper subsequence of x if
limi.t:/i <®. A selection rule S is said to preserve normality if for any
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normal number x such that x, is a proper subsequence of x, x; is also a normal
number.

We are interested in determining which selection rules preserve normality
and which selection rules do not preserve normality. We have already shown
that selection rules of the form S = U7, {0, 1} preserve normality if and only
if the sequence n, <n,<:-- is completely deterministic ([2], [3]).

In this paper, we prove that if S/~ is a finite set, then S preserves
normality. This result contains the following two special cases:

1. The finite automata case, where {0, 1}*/ ~ ; is a finite set. The result here
was obtained by Agafonov [1].

2. The renewal case, where S/~ , consists of one element. A similar result
of this special case under some additional restriction was stated in [3].

We will also give some examples of selection rules which preserve normality,
and some examples of rules that don’t. Of course the results obtained here
carry over immediately to any finite state Bernoulli shift. The restriction to the
2-shift is for convenience only.

We will use another equivalent definition of normal number. Let P be the
uniform distribution on {0, 1}; P(0) = P(1) = 3. A sequence a €{0,1}" is called a
normal number if o is generic for the product measure P" with respect to the
shift; w. = P" in the notation used in {2]. The notation and tefminologies used
here follow those in [2].

2. Proof of main theorem
THEOREM. If S/~ ,is a finite set, then the selection rule S preserves normality.

Proor. Let S be a selection rule such that S/~ is a finite set. Let
a €{0,1}" be any normal number such that ¢, is a proper subsequence of a.

Let
W={i;(a(l),a(2),,al(i—1)) €S}

={t,<t,<-}.

Then o (W) >0 from the assumption that a; is a proper subsequence. To prove
that a; is a normal number, it is sufficient to prove that for any finite subset V’
of N, there exists V C V' such that ) = P".

We first prove this fact under an additional hypothesis on V’, and then show
how to reduce the general case to the case considered here.

LeEmMA 1. Let S be the selection rule such that S|~ , is a finite set. Let a be
a normal number such that a, is a proper subsequence. Let
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W ={i; (a(1),a(2),,a(i - 1) €S}
={t, <t,<-}.

Then for any infinite subset V of N such that

limcrU'(g(W——i))=1,

k—axo

where U' ={t;;i€V'}and W —i ={j;j +i & W}, there exists V C V' such that
\4 N
Pa =P

Proor. Let 2 ={0,1}*/~, and K = §/~,. % is considered as a topological
space with the discrete topology. Let F be a subset of {0, 1} x 2" such that
F={(y,7); (i + 1)=1(i)y(i)forany i € N}.

Then F is a closed shift invariant set. Define 8 €IV by a()a(2)-a(i—1)=
B(i). We can find a subset U of U’ such that

n—1

.|
p = vague limit — D, Scriarip)
nevu i=0

n—o

exist, since (a,8) € F and F is a countable union of compact sets of the form
{(y,7); 7(1) belongs to a finite set of X}. Let K, =K and

Kio={n;£€K,n=1,0 or 1}C3

for i =1,2,---. Then each K, is a finite set. Since

U (W=l BG +K) € K,

we have
@Epm%ﬂeﬁyﬂneKﬂm=L
Thus p is a probability measure on F and

L1
p = weak ILIBKI} ; 2:0 S(TiaTis)-
Clearly, oy~ = s = P".
Let F ={(y,7)€{0,1}* xX%; 7(i + 1) = 7(i)y(i) for any i € Z}. Let {i be the
natural extension of u on F; & is the unique shift invariant measure on F such
that f|og¥s¥ = u. Let Qi, Q. and Q; be the partitions on F such that
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Q ={{(v,7)EF;y0)=i}; i €{0,1}
Q:={(v,7)EF;7(0)=¢}; £ €3} and
Q:={(y,1)EF; 7(0)=¢}; ¢ EK}U{(y,7)EF; r(0)EK"}.

Then Q, and Q. are finite partitions. Since

im oo ¥ -b) =1,

a2 {(y, 7); v(i) € K for infinitely many i >0}) = 1.

This implies that

I <38

THQiv Q)= v T'QvQy)

i

under f. Therefore,
Q:< Q< vy T(Q:vQ»)
i=1

and

V T'QQIvQ:= v T'(QvQIvQ:

under (. Hence,

-H(Q| ¥ T@veive)

+H(Q:| v T'@v Q)

-H(e|v T@verve)

under . Thus Q, is independent of VTT(Q,v Q) v Q; under f.
Let A={(y,7)EF; (1) EK and 7(i) € K for infinitely many i € N}. For
(y,7) €A, define ¢(y,7) €{0, 1}V by ¢(y,7) (i) = y(k), where {k, <k, <-}=
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{i;r())€EK}. For £=(&,6,,86)E{0, 1}, let T,={y €{0,1}"; y(i)=&
for i =1,2,---,n}. For ¢ €{0,1}* and (v, 7) € F, define

(1 if (y,r)EA and ¥(y,T)ET,
gﬁ(‘YvT) - (O else.

Then it is easy to check that g; is continuous at almost all points with respect to
w. Let V beasubsetof {i;t, €U} (CV')suchthat VEE,. Let v =pu. We
prove inductively that for any £ €{0,1}*, »(I'.) >0 implies fg.du >0 and
v([;)=PY(T,). In the case of £ = A, we have

ngdu =li€rrllji|{i;3(i)€K, 1=i=n}|=0u(W)>0 and

v(I)=PY¥({T,)=1.Let £ €{0, 1}* and x € {0, 1} satisfy »(['..) > 0. Assume the
above statement is true for £ Then since v(I;) >0, we have [g.du >0 and
v(',)=P"(I';). Hence,

LR Ll

n-—1

V(Fé) :i: E Xrg(Tiax)
<o

n

- g§X (Tia’ T'B)
= lig’_l] =

e 2 8:(T'a, T'B)

|

Lt

f gexdpt

f gedp

Since v(I's) >0, this implies f g..du > 0. Moreover, since Q, is independent of
Vioi TY(Quv Q) v Q: under f, [gedp = [gedp - w({(v,7); ¥(1) = x}). There-
fore, we have

v(Pe)=v(le) - w{(y,7); y(1) =x})
=) - P(x)=P" () P(x)=P"([y).

Thus, we have proved that for any £ €{0,1}* such that v(I',)>0, v(T,)=
P (T;). Since v and P" are both probability measures, this clearly implies that
v = P". This completes the proof of Lemma 1. |
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As promised, we now show how to reduce the general case to the one
considered in the lemma. Let U’ ={t,; i € V'}. Take a subset U of U’ such that
au (UL (W = i) exists for any k =0,1,2,+-. For j€ WN(W* — 1), let

b(j) = max{k';je h. (We —i)}.

If {b(j)} is bounded, then already any V' is such that U’ satisfies the
hypothesis of Lemma 1. We proceed then under the assumption that b(j) is
unbounded.

Take a sequence j, < j, < --- of integers belonging to W N (W* — 1) such that

@ limb(j,) == and

P k
@) oo U 4+ L+ 2,05+ DG} = fimou( () (We D)),
i=1 el i=0
Let L|={1,2,"',j|} and
L, :{ji—l+ b(ji‘l)+ 1’ ji—l +b(ji—1)+2,”',j.‘}
for i =2,3,---. Denote

a@{n+1,n+2, - n+iPY=(a(n+1),a(n+2),--,a(n+1).

Define .
Y= a(Ll)Bla(Lz)Bz L E{O, 1} R

where for each i € N, B; €{0, 1}* is one of the shortest blocks such that
a(MaR)-a()B ~ a(Da@)-al + b))

Note that the lengths of B:’s are bounded, since a()a(2)--a(i—1)€ S/~
a(Da@)ai+b()ES/~, and S/~ is a finite set. Let D be the set of
indices which are occupied by a(L;)’s in y. Then it is clear that g(D)=1,since
(U, L) = ¢(W)>0,lim,—, b(j.) = = and the lengths of B;’s are bounded.

Generally, we say that 8 and B’ belonging to {0,1}" are equivalent if there
exists an

{ E'={ei< ---}CN
E={e,<e,<---}CN
such that
{t_r(E’)=l
g(E)=1
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and B(e;) = B’(e}) for any i € N. In this case, g = Es and u§ = u s hold for
any R € E,. In particular, 8 is normal if and only if 8’ is normal.

Note that y and vy’ = a(L,)a(L,)--* are equivalent. Let L = U, L.. Then it
holds that the support of u%, is contained in the two point set {(0,0,---),

St

(1,1,--)} for any R € E,, since ¢(L)>0 and lim,_.. b(j.) = . Therefore y. is
a completely deterministic sequence such that 1 appears with positive fre-
quency. This implies that ' is a normal number [2]. Hence ¥y is also a normal
number. For i € L, define c(i)€ D by

[L N{1,2,,i}|=|D N{1,2,-,c(i)}
Then it follows that a(i) = y(c(i)) and
a(Da@)a(i =D~ y(D)yQ2)y(c@-1

forany i € L. This fact, combined with W CL, ¢(W) > 0and g (D) = 1, implies
that y. is a proper subsequence of y and that «, and vy, are equivalent.

Let
W' ={i; (y(1),y(2), -, y(i—-1))ES}={ti<to<-}

V'={i;t, e U}
U'={th,ie V}={ui<uj-} and

U = {u. < u2< "‘}.

Then we have lim,_... (1///c (i;)) = 1 by the same reason mentioned above. Also,
we can prove without difficulty using (ii) that

k
lim crc(u)< R i)) -1,
— i=0
and hence

limauw<iL:)0 (W'—i))= 1.

k—»o

Thus we have found for any V' a subset V" C V' such that Lemma 1 applies,
and this completes the proof of the theorem. |
3. Examples and open questions

ExampLe 1. Let $=U;.,{0,1}% 110"10". Then S/~ consists of one
element. Thus S preserves normality and clearly for any normal number «, a;,
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is proper. Note that {0,1}*/ ~ , is an infinite set and hence the selection rule S
cannot be duplicated by a finite automaton.

ExampLE 2. Let S ={(¢£,&, -, &)€{0, 1}, 2., (— 1)% = 0}. Then S pre-
serves normality. This doesn’t follow from our theorem, but rather from the
following lemma which was suggested to us by Professor H. Furstenberg.

LeEmMMA 2. Let p be an ergodic measure for which

;L({y €1{0, 1}"; o-({n; 2 (— l)”“’EK}) =0}> =1
for any finite set K CZ. Then in fact
™ a({n;2(~1)““’€K}>=0

for any finite set K CZ, and every a which is generic for .

Proor. It is sufficient to prove (*) for the case that K = {0}. The general case
then follows by considering £a instead of « where ¢ = 0%, or 1" according as
kz0or k<0, and k €K.

Suppose then that (*) does not hold for some a which is generic for w. Let
Zx=Z7ZU{x} be the one point compactification of Z. Define g € Z=«" by
B =0 and B(i)=ZZ\a(j) for i =2,3,---. Take any U CN such that

0U<{n; D (— 1= o}) >0
=1
and U € E.;,. Let v = ulyp). Then we have
Vo~ =, v{(y,7); 7(0) = 0}) >0
and the support of v is contained in a closed shift invariant set
F={(yv,n)E{0, 11" X Z+";7(i+1)=(—1)""+7(i)forany i € N}.

This implies that there exists an ergodic measure which satisfies the three
conditions just mentioned. We will denote this ergodic measure by the same
symbol ». From the ergodicity and v({(y,7); 7(0)=10})>0, we have that
o{{n; 7(n +1)=10})>0 for almost all (v, ) with respect to ». Let v, be the
measure on {0, 1}" defined by

v(A x{r eZ+";r(0)=0}H
v({0, 1}Y x {r € Z +"; 7(0) = 0})

vo(A) =
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for any Borel set A C{0,1}". Then

U({n;z(—l)’(i’=0}>>0

holds for almost all y €{0,1}" with respect to v,. Since v, is absolutely
continuous with respect to w, this statement is also true with respect to u,
which contradicts our assumption.

Proor oF ExampLE 2. Let @ be a normal number such that «, is a proper
subsequence. Let W ={i; (a(1),a(2),---,a(i — 1)) € S}. Since

by Lemma 2, xw €{0,1}" is completely deterministic. Since 1 appears with
positive density in yw, a, is a normal number [2].

ExampLe 3. The theorem contains the case of selection rule S which
satisfies SS CS and S™'S(={n;é&n € S holds forsome ¢ € S}) CS. If S fails to
satisfy S7'S C S, then S does not necessarily preserve normality even though
SSCS. Let a €{0,1}V be a normal number such that «(1)=0. Let

n

s={e& aenmmy it s DECES

1 2 i=1

i

Then SS C S holds. But S does not preserve normality,since o, = (1,1,1,--) is
a proper subsequence of o and is not normal.

OprEN QUESTIONS

1. Does S C{0, 1}* preserve normality if it is a context-free language?

2. Does S preserve normality if the increasing order of | S/~ , N{0, 1}" |
as n tends to infinity is small enough, say logn?

3. Given integers zo, = | and z,. Find conditions on U CZ under which the
selection rule S ={(&., &, -, &)YE{0,1}*, Zi_,z, € U} preserves normality.
We know a necessary and sufficient condition in case that z, = 1. On the other
hand, if U is an arithmetic sequence then S is generated by a finite automaton.
The general case seems to be wide open.
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