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N O R M A L  N U M B E R S  A N D  S E L E C T I O N  R U L E S  

BY 

TETURO KAMAE AND BENJAMIN WEISS 

ABSTRACT 

Given a normal number x = O,x~xz.. .  to base 2 and a selection rule 
S C{0, 1}* = LI ~=o{0, 1}", we define a subsequence x, = 0,x,,x,~. • where 
{t~ < t2 < ."} = {i ; x~x2...x~_, E S}. x, is called a proper subsequence of x if 
lim~_~t~/i <oo. A selection rule S is said to preserve normality if for any 
normal number x such that x, is a proper subsequence of x, x, is also a normal 
number. We prove that if S~ ~ ,  is a finite set, where ~ ,  is an equivalence 
relation on {0,1}* such that se~,~ if and only if {sr;srsr ES}={~; '0~ 'ES} ,  
then S preserves normality.This is a generalization of the known result in finite 
automata case, where {0, 1}* /~  is a finite set (Agafonov [1]). 

I. Introduction 

L e t  x = 0, x~x2.. ,  b e  t h e  b i n a r y  e x p a n s i o n  of  a r ea l  n u m b e r  x E [0, 1). x is 

c a l l e d  a n o r m a l  n u m b e r  ( to  b a s e  2) if f o r  a n y  k E N = { 1 , 2 , . . . }  a n d  ~ : =  

(~,, ~ ,  ..., ~ ) e {o, l} ~, 

! i m = l l { i ; x i = ~ , , x , + ~ = ~ 2 , " ' , x , + k - , = ~ : ~ ,  l ~ i ~ n } l - - - 2  -k. 

L e t  { 0 , 1 } * =  U~=o{0 ,1}  k, w h e r e  {0, 1} ° =  {^} a n d  ^ is t h e  e m p t y  word.  F o r  

= ( ~ , , ~ 2 , ' " , ~ k )  a n d  "0 = ( r / l ,  r h , ' " , r l , )  b o t h  b e l o n g i n g  to  {0, 1}*, d e f i n e  the  

c o n c a t e n a t i o n  ~rt E {0, 1}* b y  ~¢rt = (~,, ~:2, "",~:k, r / , , r t2,  "" ,  "O,)- T h u s  {0, 1}* is 

c o n s i d e r e d  as  a s e m i g r o u p  u n d e r  c o n c a t e n a t i o n .  F o r  S C{0, 1}*, d e f i n e  an  

e q u i v a l e n c e  r e l a t i o n  - s  on  {0,1}* as  f o l l o w s :  ~ - s r /  if  { ~ r ; ~ c s r ~ s } =  

{~'; r/~" E S}. N o t e  t h a t  S is a u n i o n  of  e q u i v a l e n c e  c l a s s e s  a n d  t h a t  i f  ~¢ - ,r/, 

t h e n  ~" ~ ,r/~" f o r  a n y  ~" E {0, 1}*. 

A s u b s e t  S o f  {0, 1}* is c a l l e d  a s e l e c t i o n  rule. F o r  a s e l e c t i o n  r u l e  S a n d  

a r ea l  n u m b e r  x = O , x , x 2 . . .  ( 2 - e x p a n s i o n ) ,  w e  d e f i n e  x ,  = O , x , , x , , . . . ,  w h e r e  

{t,  < t2 < . " }  = {i ; (x~, x2, . . . ,  x , -O E S} .  W e  cal l  x~ a p r o p e r  s u b s e q u e n c e  o f  x if  

l im~-.=ti/ i  <oo.  A s e l e c t i o n  ru l e  S is s a i d  to  p r e s e r v e  n o r m a l i t y  if f o r  a n y  
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normal number x such that xs is a proper  subsequence of x, xs is also a normal 

number. 

We are interested in determining which selection rules preserve normality 

and which selection rules do not preserve normality. We have already shown 

that selection rules of the form S --- UT=, {0, 1} °, preserve normality if and only 

if the sequence n~ < n2 < .'. is completely deterministic ([2], [3]). 

In this paper, we prove that if S / ~  is a finite set, then S preserves 
normality. This result contains the following two special cases: 

1. The finite automata case, where {0, 1}*/-~ is a finite set. The result here 

was obtained by Agafonov [1]. 

2. The renewal case, where S / ~  consists of one element.  A similar result 

of this special case under some additional restriction was stated in [3]. 

We will also give some examples of selection rules.which preserve normality, 

and some examples of rules that don't.  Of course the results obtained here 

carry over  immediately to any finite state Bernoulli shift. The restriction to the 

2-shift is for  convenience only. 

We will use another  equivalent definition of normal number. Let  P be the 

uniform distribution on {0, 1}; P(0) = P(1) = ½. A sequence a ~ {0, 1} N is called a 

normal number  if a is generic for  the product  measure pN with respect  to the 

shift;/x~ = pN in the notation used in [2]. The notation and tei'minologies used 

here follow those in [2]. 

2. Proof of main theorem 

THEOREM. If S /~s  is a finite set, then the selection rule S preserves normality. 

PROOF. Let  S be a selection rule such that S / - ~  is a finite set. Let  

E {0, 1} N be any normal number such that as is a proper  subsequence of a. 

Le t  
W ={i;  ( a ( 1 ) , a ( 2 ) , . . . , a ( i  - 1))E S} 

= {t~< t 2 < ' " } .  

Then i f (W) > 0 from the assumption that as is a proper  subsequence.  To prove 

that as is a normal number,  it is sufficient to prove that for  any finite subset V' 

of N, there exists V C V' such t h a t / ~ v  = pN. 

We first prove this fact  under an additional hypothesis on V', and then show 
how to reduce the general case to the case considered here. 

LEMMA 1. Let  S be the selection rule such that S] ~ ~ is a finite set. Le t  a be 

a normal number  such that a~ is a proper subsequence. Let  
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W = {i; (a(1), a (2), ..-, a ( i  - 1)) E S} 

={t ,  < t2<"'} .  

Then fo r  any  infinite subse t  V o f  N such  that  

~-®lim o-U' ( ,6=o ( W -  i ) ) =  1, 

where U '  = {t~ ; i ~ V '}  and  W - i = {j ; ] + i E W},  there exis ts  V C V '  such  that  
V ~ p N  

I ~ ~ 

PROOF. Let E = {0, 1 } * / ~  and K = S / ~  ~. E is considered as a topological 

space with the discrete topology. Let F be a subset of {0, 1} N × E N such that 

F = {(% ~-); r( i  + 1) = T(i)y(i)  for any i ~ N}. 

Then F is a closed shift invariant set. Define/3 E E ~ by a ( 1 ) a ( 2 ) . ' . a ( i  - 1) = 

/30)- We can find a subset U of U' such that 

n - - I  

t~ =vague  limit --1 ~ & ~ , ~ , ~  
n E U  r /  i = 0  

exist, since (a,/3) E F and F is a countable union of compact sets of the form 

{(% ~-); z(1) belongs to a finite set of E}. Let K~ = K and 

K , + . = { ~ - q ; ~ E K , , r / = ^ , O  or I}CE 

for i = 1,2,-... Then each K~ is a finite set. Since 

k 

I,.J ( W - i ) c { j ; / 3 ( j  + k ) E K k ÷ ~ } ,  
i = 0  

we have 

lim/x({(y,~-) ~ F ,  r (1)EK~+,})= 1. 

Thus /z is a probability measure on F and 

n - - I  

/x = weak limit --1 ~ ~r ' . .r '~. 
n ~ U  n i = o  
n ~ o o  

103 

Clearly, /z J~o.,~N =/z  ~ = pN. 

Let  P = {(% ~-) E {0, 1} z × Ez; ~-(i + 1) = r ( i ) y ( i )  for any i ~ Z}. Let  12 be the 

natural extension of /z  on t5;/2 is the unique shift invariant measure on/5  such 

that /2 I~o.oN×~,~ =/~. Let  Q,, Q2 and Q3 be the partitions on P such that 
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Q, = {{(% T) E F ;  y(0) = i}; i E {0, 1}} 

Q2 = {{(T, 1-) ~ if'; -r(0) = ~}; ~ ~ ~} and 

Q3 = {{(3', z) E F ;  r(0) = ¢}; ~: ~ K} U {(% r)  E F ;  r(0) E KC}. 

Then Q~ and Q3 are finite partitions. Since 

) l i t any  U ( W - i )  =1 ,  
k - - -~  i = 0  

/2({(y, r);  y( i )  E K for infinitely many i > 0}) = 1. 

This implies that 

under/2.  Therefore,  

and 

under/2.  Hence,  

~/ T'(Q, v QO = V T'(QIvQ2) 
i = 1  i = l  

Q3< Q2< V T'(QlvQO 
i = 1  

V T'(QlvQ3)vQ3=v T'(QzvQ2)vQ2 
i = 1  i = l  

Israel J. Math., 

under/2.  Thus Q, is independent of VTTi(Q1 v Q2) v Q2 under/2.  
Let  A = { ( y , z ) E F ;  ~-(1)EK and ~ ' ( i ) E K  for infinitely many i ~ N } .  For 

(% ~-) E A, define ~b(y, ~') E {0, I} N by ~b(y, ~-) (i) = y(k,), where {k, < k2 < . . . }  = 
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{i;r(i) EK}.  For ~:=({:l,~:z, '",~,)E{0,1}", let F~={3, E{0,1}N; "g ( i )=~  

for i = 1,2, . . . ,n}.  For ~: E{0, 1}* and (7, r ) E F ,  define 

g~(y ,~ . )=[1  if ( y , z ) E A  and 6 ( y , r ) E F ~  
\o else. 

Then it is easy to check that g~ is continuous at almost all points with respect to 

/x. Let V be a subset of {i ; t, E U } ( c V ' ) s u c h t h a t  V C - =  ..... L e t v = / x ~  We 

prove inductively that for any ~E{0,1}*, v ( Fe ) > 0  implies fgedt.t > 0  and 

v(Fe) = P~(F~). In the case of ~: = ^, we have 

~ = lim 1 I{i;/3(i) E K ,  1 =< i _-< n}l = o'u(W) > 0  and 
n ~ U  n 

v(F^) = pN (F^) = 1. Let  s c E {0, 1}* and x E {0, 1} satisfy v(F~x) > 0. Assume the 

above statement is true for s c. Then since v(F~)>0,  we have fgedtz > 0 and 

v(Fe) = PN(Fe). Hence, 

n - - I  

E Xr,. (T 'a , )  
- lim ,_~ 

u(r~) .~="ev E xQ(r '°&) 
i = 0  

n - I  

~, gex(T'a, T'/3) 
= lira i=o 

n - - I  

.~v ~, g,(T'a, T'/3) 
i = 0  

_ f g~dlx 

fa d .  

Since v(Fex) > 0, this implies fg~xdtx > 0. Moreover, since Q, is independent of 

VT=, T'(Qt v QO v Q2 under t2, f g~xdtz = f g~dtx "/x({(3,,r); y (1 )=x}) .  There- 

fore, we have 

v(Fe~) = v(F~). U({(% r);  3,(1) = x}) 

= v(Fe). P(x) = PN(F~)" P(x) = PN(Fe~). 

Thus, we have proved that for any ~ E{0,1}* such that v(F~)>0,  v(F~)= 

PN(F~). Since u and PN are both probability measures, this clearly implies that 

v = pN. This completes the proof of Lemma 1. • 
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As promised, we now show how to reduce the general case to the one 

considered in the lemma. Let  U'  = {t~; i E V'}. Take a subset U of U' such that 

, ru (Uf=o(W - i)) exists for  any k = 0, 1,2,-.. .  For  j" E W A (W c - 1), let 

b ( ] ) =  max{k ' ; ]  ~ ,=,h ( W ' - i ) } .  

If {b(j)} is bounded,  then already any V' is such that U'  satisfies the 

hypothesis  of Lemma 1. We proceed then under the assumption that b(j) is 

unbounded.  

Take a sequence jj < j2 < "'" of integers belonging to W N (W c - 1) such that 

(i) lim b( j . )  = oo and 

(ii, tro( ~,  {j,+ l,j, +2 , - . . , ] ,  + b( j , , } )=l imtru(  ~o ( W e - i , ) .  

Let  L,  = {1,2,--.,j,} and 

L, = {j,_, + b (/,_,) + 1, j, , + b(j,_,) + 2, ...,j,} 

for  i = 2, 3, . . . .  Denote 

a({n + 1,n + 2 , . . . , n  +l})  = (a (n  + l ) , a ( n  + 2 ) , - - . , a (n  + l ) ) .  

Define 
y = a (LOB,a (L2)B2""  E{O, 1} N, 

where for each i E N, B, E {0, 1}* is one of the shortest  blocks such that 

a(l)a(2)...ct(j,)B, ~ ~(1)a(2)."ct(j~ + b(j,)). 

Note  that the lengths of Bi's are hounded, since a(1)a(2)...ot(./i - 1) E S[ ~ s, 
t r (1)a  (2) ."a(] i  + b(j,)) ~ S / - ,  and S l y ,  is a finite set. Let  D be the set of 

indices which are occupied by a (L , ) ' s  in y. Then it is clear that i f (D) = l, since 

_o'(U~=, L,) ->_ _o'(W) > 0, l i m . ~  b (],) = ~ and the lengths of B, 's are bounded. 

Generally,  we say that /3  .and/3'  belonging to {0, 1} ~ are equivalent if there 

exists an 

E '  = { e ' <  . . . } O N  
E = { e ~ < e ~ < . . - } C N  

such that 

{ _~(E')= 1 
_,z(E) = 1 
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and fl(e~) =/3 ' (e ' J  for any i E N. In this case, ~-0 = -=o' and/z~ = ~ ,  hold for 

any R E-=o- In particular,/3 is normal if and only i f /3 '  is normal. 

Note that y and 3" = a(L, )a(L2) . . "  are equivalent. Let  L = UT=l L ,  Then it 

holds that the support of / z~  is contained in the two point set fr0,0,-..), 

(1,1, ---)} for any R ~ Nx~ since _o-(L) > 0 and iim,~= b (j,) = oo. Therefore )(L is 

a completely deterministic sequence such that 1 appears with positive fre- 

quency. This implies that 3`' is a normal number [2]. Hence y is also a normal 

number. For i E L ,  define c ( i ) E D  by 

[L n {1,2, .--, i}1 = ID n {1,2,-.., c (i)}[. 

Then it follows that a ( i ) =  3`(c(i)) and 

a ( l ) a ( 2 ) . . . a ( i  - 1)~ s3,(1)T(2)...3,(c ( i ) -  1) 

for any i E L. This fact, combined with W C L, _o-(W) > 0 and g (D)  = 1, implies 

that 3 ,̀ is a proper subsequence of 3' and that t~, and 3'~ are equivalent. 

Let  

W' = {i; (3,(1), 3 '(2)," ' ,  3,(i - 1)) E S} = {t'l < t ;  < . . .}  

V" ={i; t ,  E U} 

U"=  {t',; i ~ V"}= {u~' < u" t 2""i and 

U = { u ,  < u2 < "'4.  

Then we have l i m ~  (u'[/c (u,)) = 1 by the same reason mentioned above. Also, 
we can prove without difficulty using (ii) that 

limk_~ trc~u,( ,0~o ( W ' -  i ) ) =  1, 

and hence 

Thus we have found for any V' a subset V" C V' such that Lemma 1 applies, 

and this completes the proof of the theorem. • 

3. Examples and open questions 

EXAMPLE 1. Let  S = U~=,{0,1}* 110~10 ". Then S l - ,  consists of one 
element. Thus S preserves normality and clearly for any normal number a, as 
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is p rope r .  N o t e  tha t  {0, 1 } * / ~  is an infinite set  and  hence  the se lec t ion  rule S 

c a n n o t  be  dup l ica ted  b y  a finite a u t o m a t o n .  

EXAMPLE 2. Le t  S ={ ( sc , , ~ : , . - . , ~ , )E{0 ,1}  *, ~],%,(-1) ~' 20}. Then  S pre-  

s e rve s  normal i ty .  This  d o e s n ' t  fo l low f r o m  our  t heo rem,  but  ra ther  f r o m  the 

fo l lowing  l e m m a  which  was  sugges ted  to us by  P r o f e s s o r  H. Fu r s t enbe rg .  

LEMMA 2. Let IX be an ergodic measure for which 

for any finite set K C Z. Then in fact 

for any finite set K CZ, and every ~ which is generic for tx. 

PROOF. It  is sufficient to p r o v e  (*) fo r  the case  that  K = {0}. The  genera l  case  

then  fo l lows  by  cons ider ing  ~c~ ins tead of  c~ where  ~ = 0 Ikl, or  1 tkl acco rd ing  as 

k 2>-0 or  k < 0 ,  and  k ~ K .  

S u p p o s e  then  that  (*) does  not  hold fo r  s o m e  ~ which  is gener ic  fo r  tx. Le t  

Z *  = Z U {oo} be the one  point  compac t i f i ca t ion  of Z. Def ine  /3 @ Z *N by  

/3(1) = 0 and  13( i )= Y~z I, a ( ] )  fo r  i = 2,3,  .... T a k e  any  U C N  such tha t  

( -  l r " ' = o } ) > o  ,:, 

and U E ~(~.~). Le t  v = t z ~ .  Then  we have  

v ](o,,N = ;~, v({(3,, ~); ~-(0) = 0}) > 0 

and  the  suppor t  of  v is con ta ined  in a c losed  shif t  invar ian t  set  

F = {(y, ~-) ~ {0, 1} N × Z ,N ; r(i + 1) = ( - 1)~(" + ~-(i) for  any  i E N}. 

This  impl ies  that  there  exis ts  an ergodic m e a s u r e  which  satisfies the three  

condi t ions  jus t  men t ioned .  We  will deno t e  this ergodic  m e a s u r e  by  the  s ame  

s y m b o l  v. F r o m  the e rgodic i ty  and v({(~/,r);  r ( 0 ) = 0 } ) > 0 ,  we  have  that  

o-({n; r ( n  + 1 ) = 0 } ) > 0  fo r  a lmos t  all ( y , r )  with r e spec t  to v. L e t  vo be the 

m e a s u r e  on {0, 1} N defined by  

v(A × {~- E Z ,N ; ~'(0) = 0}) 
vo(a ) = v({0, l} N × {'r ~ Z ,N ; 7"(0) = 0}) 
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fo r  any  Bore l  se t  A C{0, 1} N. T h e n  

holds  fo r  a l m o s t  all , / E { 0 ,  1} N with r e spec t  to v.. Since v0 is abso lu te ly  

con t inuous  with r e spec t  to /x, this s t a t e m e n t  is a lso  t rue with r e spec t  to /x, 

which  con t r ad i c t s  our  a s sumpt ion .  

PROOF OF EXAMPLE 2. Le t  a be  a no rma l  n u m b e r  such  that  a~ is a p rope r  

subsequence .  Le t  W = {i; (a  (1), a (2) ,- . . ,  a (i - I)) E S}. S ince  

by  L e m m a  2, Xw E {0, 1} N is c o m p l e t e l y  de terminis t ic .  S ince  1 a p p e a r s  with 

pos i t ive  dens i ty  in Xw, ~, is a no rma l  n u m b e r  [2]. 

EXAMPLE 3. T h e  t h e o r e m  con ta ins  the case  of  se lec t ion  rule S which  

satisfies SS  c S and S - ' S (  = {~1 ; ~q ~ S holds  fo r  s o m e  ~¢ E S}) C S. I f  S fails to 

sa t i s fy  S 'S  CS,  then  S does  not  necessa r i ly  p r e s e r v e  no rma l i ty  even  though  

S S C S .  Le t  a E{0,1} ~ be a normal  n u m b e r  such  tha t  a ( l ) = 0 .  Le t  

s = ( ~ , , ~ , . . . , ~ . ) ~ { o ,  1}*; g- , -2.+,  _- 
i = l  i = l  

Then  SS  C S  holds.  But  S does  not  p r e s e r v e  normal i ty ,  s ince a t  = (1, 1, l, .--) is 

a p rope r  s u b s e q u e n c e  of  a and is not normal .  

OPEN QUESTIONS 

1. Does  S C{0, 1}* p r e s e r v e  normal i ty  if it is a c o n t e x t - f r e e  l anguage?  

2. Does  S p r e s e r v e  no rma l i ty  if the increas ing  o rde r  of  ] S / - s  D{0, 1} n ] 

as n tends  to infinity is small  enough ,  say log n ? 

3. G iven  integers  Zo --- 1 and z,. Find condi t ions  on U C Z  under  which  the 

se lec t ion rule S = {(~c~, ~:2,'", ~,,) E {0, 1}*, ~? , ze, @ U} p r e s e r v e s  normal i ty .  

W e  k n o w  a n e c e s s a r y  and sufficient condi t ion  in case  that  z, = I. On the o the r  

hand,  if U is an a r i thmet ic  s e q u e n c e  then  S is gene ra t ed  by  a finite a u t o m a t o n .  

The  genera l  case  s e e m s  to be  wide  open .  



110 T. KAMAE AND B. WEISS Israel J. Math., 

REFERENCES 

1. Y. N. Agafonov, Normal sequences andfinite automata, Dokl. Akad. Nauk SSSR 1791(1968). 
2. Teturo Kamae, Subsequences o[ normal sequences, Israel J. Math. 16 0973), 121-149. 
3. B. Weiss, Normal numbers as collectives, Proc. of Symp. on Ergodic Theory, Univ. of 

Kentucky, 1971. 

DEPARTMENT OF MATHEMATICS 
OSAKA CITY UNIVERSITY 

SUGIMOTOCHO, OSAKA, JAPAN 

AND 

INSTITUTE OF MATHEMATICS 
THE HEBREW UNIVERSITY OF JERUSALEM 

JERUSALEM, ISRAEL 


